
11

Logic in computer
science, engineering, industry 
and (time permitting) in math

Yuri Gurevich, Prof. Emeritus

Computer Science & Engineering

University of Michigan



Logic

Began as a tool of convincing argumentation, along 
with rhetoric, demagoguery, theatrics. Branched out 
into several areas, in particular:

Statistical reasoning
Judicial logic, with various legal standards for the 
burden of proof: by preponderance of evidence, 
clear and convincing evidence, beyond reasonable 
doubt.
Math logic uses math methods and arguably 
studies the logic of math. Armchair arguing is 
easier than that in the court of law.

2



Mathematical logic

Prehistory

◼Aristotle, Boole, Frege

◼Russell’s paradox: 𝑥 ∈ 𝑅 ⟺ x ∉ 𝑥

Foundation of mathematics

Formal languages

3



LOGIC IN CS

4



Types

History

◼ Russell and Whitehead

Nowadays

◼ Programming languages

◼ Java virtual machine, .Net

◼ Static analysis of programs

5



Recursion

History

◼ Hilbert, Ackerman and Rózsa Péter

◼ Gödel’s recursive calculus for general 
algorithms

Nowadays 

◼ Recursion theory

◼ Functional programming languages

◼ Syntax and semantics of formal languages

6



Much of what logicians thought about 
earlier on has found applications in CS.

7



Machine models

Turing machines

◼ Formalization of the notion of algorithm

◼ Universal algorithms

Von Neumann architecture

Random access machines

Cellular automata, neural networks

8



Complexity theory

One precursor: Constructive math

Time and space complexity classes

P =? NP

◼ Steve Cook: analogy with 
recursive vs. recursively enumerable

◼ Leonid Levin, and the problem of 
perebor, i.e. exhaustive-search.

9



Model theory to database theory

First-order logic

Relational databases
◼ First-order structures. Schemas, with their 

attributes, are improved vocabularies. 

◼ Codd’s operations vs. Tarski’s cylindrical 
algebra

Implementation independence, and 
polynomial time for general structures, e.g. 
unordered graphs. 

10



Proof theory then and now

Classical vs. intuitionistic deductive 
systems

Theorem provers, e.g. Coq

SAT solvers, SMT (satisfiability modulo 
theories) solvers

11



One under-appreciated story

Solve the following “proportion”:

𝐹𝑆𝐴

𝑅𝑒𝑔
∝
𝑁𝑃𝐷𝐴

𝐶𝐹
∝
𝐷𝑃𝐷𝐴

𝑋

Donald Knuth did. LR(k) languages.

This is about formal languages but with little 
forerunner logic work.

12



Software specifications

The issue of software specification is 
another example of the use of logic in 
computer science that has little forerunner 
logic work.

This is the issue that brought me from the 
University of Michigan to Microsoft. 

While there has been much work in the 
area, I take the liberty to go more personal 
on this one particular issue.

13



The V-diagram

14From Wikipedia



Personal story

1982, UM

◼ What’s Pascal? Semantics of programs

◼ What is computer science about? 

What’s an algorithm

◼ Declarative/imperative

◼ High-level and executable; is that possible?

◼ Abstract state machines 

1998, Microsoft 

◼ Specifications and model-based testing

◼ Architects, developers, testers, and researchers

Spec Explorer; EU vs. Microsoft
15



LOGIC IN CE

16



History

◼ Boolean circuits

◼ Many-valued logics

What drives the use of logic nowadays?
Formal languages.

17



Proliferation of formal languages

Programming languages
◼ Machine languages

◼ Assembly languages

◼ C, C++, C#, Java, …

Database languages

Specification languages

Authentication/authorization languages

Hardware languages, like Verilog

Languages for quantum computing

18



Engineers do logic day in day out

Programming in different languages at the 
bewildering variety of levels of abstraction

Writing compilers. A compiler for a language L is 
a universal program for L (possibly though not 
necessarily in L). 

Writing specifications, verification of specifications

Testing 

◼ Model based testing

◼ Conformance testing

19



Logic day in day out (cont.)

Formalizing stuff e.g. certificates, claims

Creating specialized languages, e.g. 
XACML, eXtensible Access Control Markup 
Language

Model checking, i.e. automatic verification 
of finite-state-machines properties

Increasing use of assertion verification, 
SAT solvers, provers

20



Information leakage problem

The info leakage problem is a good 
example of a confusing medley of 
abstraction levels.

There are numerous off-the-shelf tools 
working at different levels of 
abstraction. This helps but does not 
solve the problem.

21



Software engineers do not know 
logic

Very few studied logic. 
Instead they studied calculus which they rarely, if 
ever, use.

Even the brightest of them – who may be brilliant 
– don’t know formal logic.

Typically they do not realize even that there is a 
science of logic that is relevant to their work.

From a conversation with a talented software 
architect: “I guess their language is a subset of 
yours."

22



The syntax divide

Engineers’ thinking is typically very syntactical.

◼ Code is the meaning.

Logicians always speak about formulas but don’t write 
them honestly.

Precise vs “precisable.” Logicians often are cavalier 
about things that are clear in principle.

23



Feasibility vs complexity

We, the logicians, long neglected 
practical complications of propositional 
logic. 

◼ “Without loss of generality 𝜑 is in 
conjunctive normal form.”

24



The semantic divide

This is where logicians shine, and engineers are 
cavalier to their own peril.

The price that they – and society! – pay is big. 

However logicians live in a much cleaner world. 

◼ It is not enough that software has the right 
functionality. It should have good performance, be 
maintainable, be legacy compatible, etc.

◼ The correctness of software

25



Declarative/imperative divide

In the theory of abstract state machines, structures 
(normally static in logic) evolve as computations 
progress

In authorization, there are communication rules and 
filters. E.g. 

if  then send [with justification]  to p,

if  then accept [with justification only] pattern

from p.

Obligations have imperative aspects.

26



So what is needed most?

Logical literacy 

Understanding both hazards of abstraction:
under-abstraction and over-abstraction

Semantics and the interplay of syntax and 
semantics

Remark. It is soundness that is most needed by 
engineers. Completeness is typically too good to 
be true.

27



LOGIC IN MATH

28



Diverse history

USA. Logicians have been fighting to achieve 
the acceptance  of mathematicians.

Europe on the ETHZ Math Dept example. 
Zermelo, Weyl, Gonseth, Bernays, Specker,
Lauchli, Engeler. Now: nobody.

Russia. Formal logic was virtually forbidden in 
the 1930s. After the 1960s thaw, it was held 
in high regard. Kolmogorov chaired the MSU 
logic department until his death.

29



What does the future hold?

There is much inertia in the academy. In 
the long run much depends on whether 
logicians contribute to math at large.

To contribute, the logician should know 
the relevant math intimately. 

But what is easier, for a logician to learn 
relevant math, or for a mathematician to 
learn relevant logic?

30



Example: Lefschetz’s principle

Tarski, but – as far as the math is concerned -
also Chevalley (constructible sets are closed under 
projections).
Barwise - Eklof
“Although I am aware of the precise formulations 
using first order logic and beyond ..., I tend not to use 
them. Rather I view the Lefschetz principle as more of 
a philosophical principle of what ought to be possible 
in general, and do the necessary verifications as and 
when I need them ... I suspect this attitude is pretty 
common among many algebraic geometers,” Donu
Arapura.

31



Example: Kurt Gödel and Pierre 
Deligne

Another example of mathematicians 
rediscovering a logic theorem:

Every coherent topos has enough 
points.

32



Example: Whitehead problem

Is every Whitehead abelian group A free?

◼ Whitehead: If f : B → A is surjective with 
kernel Z, then there is g : A → B with 𝑓𝑔 = 1𝐴.

Shelah

◼ V=L → positive

◼ Martin's axiom + ¬CH → negative

A mathematician can work with such tools 
without going deeply into forcing.

33



Calkin Algebra Problem

Are there outer automorphisms?
◼ Calkin Algebra: The quotient of the ring of 

bounded linear operators on a separable infinite-
dimensional Hilbert space by the ideal  of compact 
operators.

CH → Yes (Phillips & Weaver, 2007)

Proper Forcing Axiom → No (by Farah, 2011)

Understanding Shelah’s proper forcing is a 
nontrivial time investment for a mathematician.

34



THANK YOU

35


